Conditional preparation of arbitrary superpositions of atomic Dicke states

Karel Lemr¹ and Jaromír Fiurášek²

¹ Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic
² Department of Optics, Palacký University, Olomouc, Czech Republic

We present a protocol capable of preparation of arbitrary superpositions of atomic Dicke states in the form of

\[|\text{target} \rangle = \sum_{n=0}^{N} c_n |n\rangle. \]

Initial Gaussian light beam in subjected to a squeezing operation followed by conditional single photon subtraction on a beam splitter. Subsequently the light interacts with atomic ensemble via a QND interaction

\[H_{\text{QND}} = \hbar \kappa \hat{a} \hat{a}^\dagger + \hbar \hat{b} \hat{b}^\dagger. \]

Finally we propose performing homodyne detection of the \(\hat{p}_L \) quadrature of light (conjugate to \(\hat{x}_L \)). Resulting action on atoms reads

\[\hat{\Theta}(\hat{p}_L) \propto \left[(\hat{x}_A + \hat{p}_L / \lambda) \exp \left[-\left(\hat{x}_A + \hat{p}_L / \lambda \right)^2 \right] \right], \]

where atomic quadrature \(\hat{x}_A \) has been defined using collective atomic spin and \(\hat{p}_L \) stands for the outcome of the homodyne detection.

Preparation of superpositions that contain \(|n\rangle \) Dicke state requires \(N \) repetitions of the above described procedure accompanied by application of atomic displacement performed by magnetic field:

\[\hat{D}(\delta) \hat{a} \]

The best strategy for choosing outcomes of the homodyne detection that will be considered as successful is the usage of fidelity contours as shown in the figure below:

The figure depicts probability distribution (colormap) and final state fidelity (contours) as a function of a pair of possible homodyne detection outcomes \(p_{L1}\) that need to be performed in order to prepare the Dicke state \(|2\rangle \). It is straightforward to see that the optimal choice for the best fidelity - probability trade off is the choice of homodyne detection outcomes satisfying the relation

\[F(\text{accepted } p_{L1}, p_{L2}) > f_{\text{min}}, \]

where \(f_{\text{min}} \) is some fidelity threshold upon which also the protocol success probability depends.

This research has been supported by the Ministry of Education of the Czech Republic under the projects Center of Modern Optics (LC06007), Research Center - Optical structures, detection systems and related technologies for low photon number applications (1LM06002) and Measurement and Information in Optics (MSM6198959213).

Contact information: Karel Lemr, email: lemr@optics.upol.cz, web: http://optics.upol.cz/lemr